

Groundwater Resources (GWR) in the World and the essentiality of Efficient/Sustainable utilization

As the 2nd largest fresh water resources in the world (1st: glaciers)

GWRs: Global Economy and the Environment. One third of World Population depends on GWR. 70% of GWR is utilized by Agriculture Sector (World Bank statistics published in 2014).

Recent decline in surface Water Resources >> **Excessive Stress** on GWR to meet **demands** of various sectors.

>> GW is mined in different parts of the world to continue irrigated agriculture. Global GWR shortage is estimated at about 750 to 800 BCM (Billion Cubic Meter) / per year.

Consequently, Over pumping, depletion of groundwater resources, and land subsidence are widespread and by groundwater tables decline this resource may not be as readily available.

Towards Sustainability: Time to Recharge Aquifer

Methods & Equipment + Monitoring >> Avoid Over-pumping <<

For more: cw.hv/R/Woo

WORLD RESOURCES INSTITUTE

Groundwater Resources in Iran: Demand More Than Supply and Unsustainable Utilization

Dry Country: %10 receives enough rainfall to meet demand side

- Remainder: Heavily reliant on non-surface Water
- 60% Water Demand: From Aquifers

Huge Increase in Demand for Water:

• Population growth + Economic Development + A Boom in Industry and Farming

>>> Very High Groundwater Pumping Rates: Agriculture Sector

UNSUSTAINABLE GWR Utilization >>>> the Slow-filling Aquifers have not been able to keep up

Average Over Pumping : 6 BCM / Yearly

In 79 plains located in the central plateau of Iran, Overall Water Level Depletion more than 2 meters / Year

Source: The Ministry of Energy and Water, Iran

Is there any...

Solution!?

Groundwater Monitoring and Management Solution

Comparison with other methods

RSA ELECTRONICS

An Innovative Solution For Sustainable Groundwater Resource Management: The Case Of Khorasan-Razavi Province, Iran The previous projects: Local

	Provinces	Sales (Quantity) Completed Installation (Quantity)		Completed Installation (Percentage)	
1	Alborz	319	319	100%	
2	Ardabil	1029	1029	100%	
3	Booshehr	1554	1554	100%	
4	Charmahal	900	900	100%	
5	Eastern Azarbayjan	1850	1850	100%	
6	Fars	10048	10048	100%	
7	Gilan	189	189	100%	
8	Golestan	1344	1344	100%	
9	Hamedan	2124	2124	100%	
10	Hormozgan	1121	621	55%	
11	Ilam	1008	1008	100%	
12	Isfahan	4993	2993	60%	
13	Kerman	3440	3440	100%	
14	Kermanshah	1951	1951	100%	
15	Khoozestan	603	603	100%	
16	Kohkilooyeh	510	510	100%	
17	Kurdestan	2516	2516	100%	
18	Lorestan	1203	1203	100%	
19	Markazi	872	872	100%	
20	Mazandaran	288	288	100%	
21	Northern Khorasan	1617	1617	100%	
22	Qazvin	1557	1557	100%	
23	Qom	1059	1059	100%	
24	Razavi Khorasan	9396	9396	100%	
25	Semnan	1116	1116	100%	
26	Sistan & Baloochestan	1213	1213	100%	
27	Southern Khorasan	1698	1698	100%	
28	Tehran	394	394	100%	
29	Western Azarbayjan	4828	4328	90%	
30	Yazd	1580	1580	100%	
31	Zanjan	1235	1235	100%	

After obtaining approval from the ministry of energy and water, the product and Solution has being installed across all provinces in Iran as a key element to manage groundwater resources. - Until end of 2015: out of 65K, 95% Installed and being used by water authorities

Q1 2016 : Won tenders and signed contract to install additional 45K across all provinces, while in some tenders was the only qualified participant

RSA ELECTRONICS

The total amount of collected fines: 542,000\$, collected from a total of 422 cases pumping quota violation via the Smard Card utilization by farmers. No additional Operational Cost for water utilities.

Plain: Mah'yalat	YEAR					
	2012	2013	2014	Plain	Violation Cases	Fine Collected (USD)
Average Pumping Hour in	5,207	5,496	5,508	Machad	06	122.019
authorized wells (Hours)				Masnau	90	155,918
the Amount of Over Pumping in	10,408,777	12,750,328	12,638,433	Sabzevar	1	1,618
licensed wells (Cubic Meter)				Torbat	40	
Change in Pumping Hours	-	+5.6%	+0.2% Heidarieh		40	51,469
Change in Over Pumping Volume	-	+22.5%	-0.9%	Torbat Jam	96	176,462
Plain: Mash'had	YEAR			Neishahoor	3	7 818
	2012	2013	2014		5	7,010
Average Pumping Hour in	4,341	4,516	4,375	Ghoochan	0	0
authorized wells (Hours)				Kashmar	42	55,052
the Amount of Over Pumping in	64,148,954	42,739,134	29,263,749	Sarakh's	58	87,627
licensed wells (Cubic Meter)				Gonabad	86	28,137
Change in Pumping Hours	-	+4.0%	-3.1%	Dorgoz	0	
Change in Over Pumping Volume	-	-33.4%	-31.5%	Dargaz	0	U
		1		l		

Conclusion:

This paper provided an overview of the installation of SEWMs as a key component in the implementation of groundwater rebalancing plan in Khorasan-Razavi Province, Iran. Based on previous promising results in other provinces, along with several features included, installation of SEWMs is considered as an effective means to mitigate groundwater table decline. As a result of this plan, which involved multiple institutions (e.g., Ministry of Energy, Ministry of Agriculture, and local governors) the regional water authority managed to install 5,948 SEWMs in the region. The groundwater level depletion rate in Mashad and Mahvelat (which are almost completely equiped with SEWMs), along with the pumping hour and over pumping have been effectively reduced, leading to saving 182 MCM of groundwater. Additionally, the SEWM technology provided an opportunity to mitigate the over-pumping rate by charging farmers for surplus water withdrawal, and as a result, a sum of 542,000 USD was collected by electricity and water authority. Improving groundwater regulation aided by SEWMs is a promising water management strategy for arid and semi-arid regions.

