A numerical assessment of large screened wells on flow fields and solute distribution

Daniel Gomes (ERM, Denver, CO)
Robert Stuetzle (Dow Chemical, La Porte, TX)
‘Monitoring Wells are instruments that are there to tell you lies’

John Williams
The problem

Long screens often used in groundwater studies
Good for ideal, Theis type 2D aquifers
Largely replaced with short screens and multi level monitoring systems recently
However, still present in many sites
Potential for shortcutting and communicating different aquifers largely understood, but

■ How bad is the problem at contaminated sites?
■ What sorts of flow rates can go through monitoring wells under typical conditions?
■ Is it that bad really? Where and what driving forces and factors are at play?
Objectives

To illustrate and quantify the effects of long screened monitoring wells on flow fields and contaminant distribution

To try to quantify flows through monitoring wells under typical hypothetical scenarios

To illustrate the problem on a real site
Methodology

Used modeling techniques (Modflow / MT3D) to simulate typical (and some more extreme) scenarios

- Wells simulated as High K zone
- Compared results with Multi-Node Well (MNW) package (Halford & Hanson, 2002)

Theoretical Scenarios

- Single layered aquifers
 - High K; varying gradients
- 3-Layer system (aquifer-aquitard-aquifer)
 - Varied K and head differences in Aquifers
 - Plotted Q_{well} versus ΔH (Head Difference in aquifers)
 - Plotted Q_{well} versus $K_{aquifers}$

Practical Application

- Real site; multiple aquifer/aquitard layers; significant Head differences across layers
- Estimated Q_{well} using MNW and high K approach to quantify flows through the well
Theoretical Cases

3D Modflow models

Case 1: Single Aquifer
- Single aquifer, $K=1 \times 10^{-2}$ cm/s;
- Varying horizontal hydraulic gradient
- Varying screen lengths

Case 2: 3-Layer system aquifer/aquitard/aquifer
- Varying vertical hydraulic gradient (head differences between aquifers)
- Varying K values in top/bottom aquifers
- Varying Monitoring well Diameter (2”; 4”)

The world’s leading sustainability consultancy
Theoretical Case 1: Single Aquifer

\[K_{\text{aquifer}} = 1 \times 10^{-2} \text{ cm/s} \]

Varied horizontal gradient:
- 0.001
- 0.01
- 0.05

Varied screen length:
- 50m
- 100m

Well simulated with MNW
Theoretical Case 2: 3-Layer System

3-Layer system (Aquifer/Aquitard/Aquifer)

Varying K_{aquifer} and ΔH between aquifers (e.g. 2m head difference)
Results – Case 1: Single aquifer

Flows through monitoring wells very small (<1e-3 gpm) in all cases.
Flows increase with increasing screen lengths, however still very small.
Increasing horizontal gradients increase flows, also modestly.
Results – Case 2: 3-Layer Case
ΔH=2m, No Well
GW Head Contours and flow vectors
Results – Case 2: 3-Layer Case

ΔH=2m, 2” Monitoring Well

GW Head Contours and flow vectors
Results – Case 2: 3-Layer Case

ΔH=2m, 2” Monitoring Well

GW Head and Drawdown Contours
Results – Case 2: 3-Layer Case
ΔH=2m, No Well, Cross-Section View (Head/Flow)
Results – Case 2: 3-Layer Case
ΔH=2m, 2” Well, Cross-Section View (Head/Flow)
Results – Case 2: 3-Layer Case

ΔH = 2m, No Well, Cross-Section View (Plume)

Plume does not cross aquitard
Results – Case 2: 3-Layer Case

$\Delta H = 2\text{m}, 2''\text{ Well, Cross-Section View (Plume)}$

Cross-connection through monitoring well
Results – Case 2: 3-Layer Case

ΔH

Head Difference = 2 m
Time(day): 0.0
Simulation Results – Monitoring Well Flows

Flow through monitoring well v/s head differences

- 4" inch wells
- 2" wells

- K=1x10^{-2}\text{cm/s}
- K=1x10^{-3}\text{cm/s}
- K=1x10^{-4}\text{cm/s}
Summary – Single layered and Layered aquifer cases

Flows through long screened wells within single aquifers are negligible under typical horizontal hydraulic gradients (<0.001 gpm)

In layered aquifer-aquitard aquifers, flows can be substantial depending on K and head differences

- Driving force is head difference across aquifers (vertical gradient)
- Flows increase linearly with increasing head difference and Hydraulic conductivity (Darcy’s Law)

Long screened wells may significantly distort groundwater flow fields and cross communicate different aquifers, affecting groundwater contours, as well as concentration distribution, in particular in areas with:

- Moderate to high Ks
- Large head differences (recharge/discharge areas, close to pumping wells)
Case Study: Real Site Conditions

Let’s see what happens in a real case:

- Multi-layered system composed of fractured variably-lithified sandstones and clay/shale
- Over 700 monitoring wells installed to characterize and monitor the site, screened based on geologic sequences (lithostratigraphy).
- Recent high resolution methods used to refine understanding of site and define hydrogeologic units (HGUs)
- Strong downward gradients (Head difference of 8-9 meters over ~50 m depth)
- Delineation of HGUs identified confining layers occurring within supposed aquifer unit of lithostratigraphically based CSM
- Older wells screened through lithostratigraphically defined units, thus cross communicating previously isolated layers (HGUs).
The Geology

Variably-lithified sequence of fractured, Triassic, interbedded clay/shale and sand/sandstone of fluvio-lacustrine origin.
Evolution of Lithostratigraphically Based Framework

<table>
<thead>
<tr>
<th></th>
<th>1980s</th>
<th><1993</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquifer 1</td>
<td>Fill smD’s t</td>
<td>Fill smD’s</td>
<td>Fill Aquifer 1</td>
</tr>
<tr>
<td>Aquifer 2</td>
<td>smD’s t smD’s t</td>
<td>smD’s t smD’s</td>
<td>Aquifer 2</td>
</tr>
<tr>
<td>Aquifer 3</td>
<td>smD’s t Aquitard</td>
<td>smD’s t Aquitard</td>
<td>Aquifer 3.1</td>
</tr>
<tr>
<td>Aquifer 4</td>
<td>smVA’ts Aquitard</td>
<td>smVA’ts Aquitard</td>
<td>Aquifer 3.2</td>
</tr>
<tr>
<td></td>
<td>smVA’s Aquitard</td>
<td>smVA’s Aquitard</td>
<td>Aquifer 3.2u</td>
</tr>
<tr>
<td>Aquifer 1</td>
<td>smH Aquifer 1</td>
<td>smH Aquifer 2</td>
<td>Aquifer 3.1</td>
</tr>
<tr>
<td>Aquifer 2</td>
<td>smD’st Aquifer 2</td>
<td>smD’st Aquifer 3.1</td>
<td>Aquifer 3.2o</td>
</tr>
<tr>
<td>Aquifer 3</td>
<td>smDZ Aquitard</td>
<td>smDZ Aquitard</td>
<td>Aquifer 3.2u</td>
</tr>
<tr>
<td>Aquifer 4</td>
<td>smVA’ts Aquitard</td>
<td>smVA’ts Aquitard</td>
<td>Aquifer 4</td>
</tr>
<tr>
<td></td>
<td>smVA’s Aquitard</td>
<td>smVA’s Aquitard</td>
<td>2010 Aquifer 4</td>
</tr>
</tbody>
</table>

Fill, smD’s, smH, smDZ, smVA’ts, smVA’s, smD’st, smDT, smDOB, smDUB, Aquifer 1, Aquifer 2, Aquifer 3, Aquifer 3.1, Aquifer 3.2, Aquifer 3.2u, Aquifer 4.
Comparison of Lithostratigraphic vs. Hydrogeologic Framework
Comparison of Lithostratigraphic vs. Hydrogeologic Framework

Where did wells get screened in Post-2010?

Lithostratigraphic Aquifer 3.1

Lithostratigraphic Aquifer 3.2u

Lithostratigraphic Aquifer 3.2o

Aquitard HGUs 2014
Comparison of Lithostratigraphic vs. Hydrogeologic Framework

Where did wells get screened in 1990s-2000s?

Lithostratigraphic Aquifer 3.1
Lithostratigraphic Aquifer 3.2

Aquitard HGUs 2014
Comparison of Lithostratigraphic vs. Hydrogeologic Framework

Where did wells get screened in 1980s?

Lithostratigraphic Aquifer 3 1980s

Aquitard HGUs 2014
>700 Conventional Wells

- Screened based on lithostratigraphic units

- Some span several HGUs due to evolution of stratigraphic framework

- Average screen length ~8m

- Typically 125mm (~5”) wells in 300mm (~12”) Boreholes
Hydraulic Conductivity and Heads profile

(Stuetzle, 2014)
Hydraulic Conductivity distribution in the model

K_H values based on pumping test data (IHU and MUEG, 2008)
K_V values based on triaxial testing (MUEG and IHU, 1998)
Effects on flows – plan view – Water Table

No clear effects from the monitoring well in the water table

Looking good, but…
Effects on flows – plan view

Top of Screen

Bottom of screen
Effect on Flows: Cross Section

No well
Effect on Flows: Cross Section

With 1 well

Flow through well (steady state): 1.5 gpm!
Flowmeter data confirms it!

Flow rates

(Synwoldt, 2012)
What happens with multiple wells?

Do rates scale up linearly to the entire site?
- How do flows and gradients change in various layers?
- How does this impact contaminant distribution?

Hard to know… this is a simplified model only…

Ran 1 simulation using the same well design distributed across the model
- The site has many more wells placed in different depths

Let’s see the results!
Top of screens, single well

Top of screen, 7 wells
Bottom of screen, 1 well

Bottom of screen, 7 wells
Pathlines – 3D view multiple wells

Flow per well:
~1.1 gpm
Plume 3D view – multiple wells
Conclusions – Case Study

Downward flows through long screened wells can be significant, in the order of a few gpm per well. Multiple

With over 700 wells in place, many of them long screened wells, the potential for cross connection can be significant, if K is high and head differences across aquitards are important (>1m).

Proper definition of aquitard position in space is critical

- Geophysical logging and multi-level monitoring wells help identify such layers, and guide future well design

Sites with large screened wells will distort ambient flow conditions, groundwater contours and vertical gradients. This should be recognized during data interpretation, remedial design and modeling efforts.
References: Pending

Acknowledgements

Authors are thankful for the support of Dow Chemical and ERM West

Special thanks to our colleagues for their valuable inputs and suggestions:
Robert Cleary, Ph.D., Princeton Groundwater
Ted Cota and John Imse (ERM West)