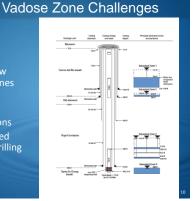


How do we address this hydrogeologic complexity? Physical challenges drilling a monitoring well to 1,000'+ Challenges associated with potential impacts of drilling fluids on groundwater chemistry

WATER Current Practices

- Where we are with the groundwater monitoring program today
 - Dual-rotary casing advance
 - $-\operatorname{Air}$ and potable water only within aquifer
 - Optimized borehole annulus and screen slot size
 - Single screen set near the top of the regional (main) aquifer
 - Extensive well development

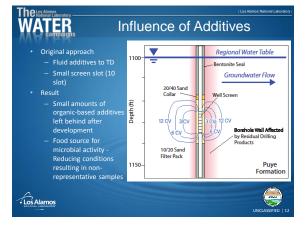


Netional Laboratory

- Lost circulation
- Flowing Sands
- Detection of low productivity zones
- Discrete gw samples

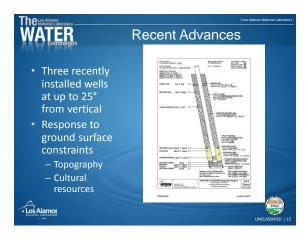
• Los Alamos

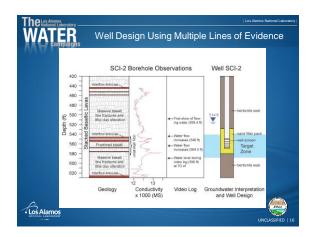
- Perching horizons
- Isolating perched zones during drilling

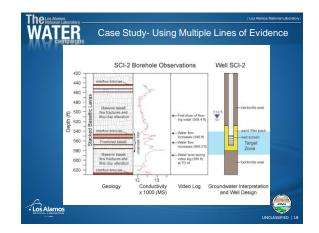


WATER campaign:

· Los Alamos


Drilling Fluids


- Foam (organic carbon source)
- Long-chain Polymers (organic carbon source)
- Bentonite-based mud (rare)


<page-header><section-header> Perspected Status et al. Pendulum Swing Status et al. Pendulum Swing Status et al. Result: can cause effervescent groundwater (bubbly) High apparent turbidity Status et al. Status et al.</

<page-header><page-header><page-header><section-header><section-header><list-item><section-header>

WATER campaigns

·Los Alamos

Future Challenges

- Directional drilling, targeting 900 ft bgs
- Multiple installations (from the same drill pad?)
- Enable thorough deployment of amendments into groundwater plume
- 300-500 ft horizontal screened interval

Lessons Learned

- Keep it simple: single screen completions are much easier to develop
- Well design (slot size and annular thickness) optimizes well development
- Well development: spend more time than you think to ensure data quality

