

Impact of Hyporhelc Exchange on Stream Temperature In Restored Systems

Hyporheic Exchange

LandStudies

- Mixing of surface water and groundwater occurring in the saturated region along a channel
 Extent of the exchange can be limited by topographic and geologic factors
 Header file active function

 - Has significant influence on many biological, chemical, and physical processes
 Is subject to seasonal variations due to groundwater fluctuation

Restoration Approach

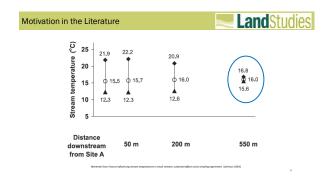
LandStudies

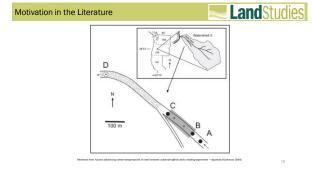
- Kurtz Run Restoration at Landis Homes
 - 1,500 If floodplain restoration (6 acres) Provide stormwater management by increasing flood storage capacity and infiltration
 - Reduce sediment and nutrient loading by reducing bank erosion processes and increasing channel stability
 Reconnect system to groundwater table by removing legacy sediment

Kurtz Run at Landis Homes

LandStudies

Kurtz Run Floodplain Restoration at Landis Homes



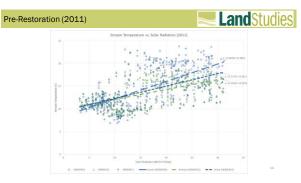


Motivation in the Literature

LandStudies

- Traditional thinking dictates the best way to cool a stream system is through vegetative shading
 - Substantial vegetative shading can be expensive and difficult to establish
- Factors Influencing Stream Temperatures in Small Streams (Johnson 2004)
 - 150 m of stream was shaded using black plastic sheeting
 - Hypothesis was that added shade would reduce stream temperatures throughout the reach
 - Shading proved to have little effect on stream temperature





LandStudies

- Johnson's (2004) energy balance indicates solar radiation as the largest thermal input to streams
 - This was the basis of the decision to compare the relationship between daily maximum temperature and incident solar radiation
 - This method provides an accurate comparison of pre and postrestoration conditions and would eliminate skew from seasonal and annual variations

Stream Temperature	vs. Solar Radiation (2014)
\$ * °	
20.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11500 Star	
I and the second s	
0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	
5.00	

Descriptive Statist	tics
---------------------	------

LandStudies

LandStudies

2011	Temp Dat	а		2014 Temp Data			
	Sensor 10	Sensor 11	Sensor 12		Sensor 10	Sensor 11	Sensor 12
Maximum	23.80	21.30	23.30	Maximum	26.00	24.00	24.90
Minimum	8.20	8.40	6.90	Minimum	5.90	7.70	6.60
Mean	14.51	13.40	13.93	Mean	14.25	13.73	13.71
Median	13.15	12.85	13.15	Median	14.00	13.70	13.75
Range	15.60	12.90	16.40	Range	20.10	16.30	18.30
Correlation Coefficient	0.69	0.56	0.55	Correlation Coefficient	0.43	0.44	0.36
r ²	47.52%	31.53%	30.50%	r ²	18.58%	19.56%	13.26%

Results

LandStudies

- Variation in stream temperature was determined to be statistically significant not due to natural variation
 variation in solar radiation was determined to be statistically insignificant
- · 53% reduction in influence of solar radiation on daily maximum
- stream temperature This reduction is attributed to the restoration activities no other significant change occurred in the system during this time period

Conclusions

- Establishing hyporheic exchange can provide long term benefit with faster turnaround than attempting to establish vegetative shading
 - Even when successfully established, the potential benefit that shading can provide is limited
- · Hyporheic exchange should be accounted for when examining stream temperature dynamics
- · It is possible to design restoration efforts to increase surfacegroundwater interaction while achieving other goals
- Multiple benefits can coexist without diminishing the value of other benefits

References

LandStudies

- Johnson, S. L. (2004, July 24). Retrieved 6 21, 2016, from Oregon State University: http://forestry.oregonstate.edu/cof/fe/watershd/fe538/Stream Temperature/johnson_factors_effecting_stream_temp_CJOF04. pdf
- NASA. (n.d.). Climatology Resource for Agroclimatology. Retrieved from NASA Prediction of Worldwide Energy Resource (POWER): http://power.larc.nasa.gov/cgibin/cgiwrap/solar/agro.cgi?email=agroclim@larc.nasa.gov
- Tonina, D., & Buffington, J. M. (2009). Hyporheic Exchange in Mountain Rvers I: Mechanics and Environmental Effects. Geography Compass, 1063-1086.