Groundwater Modeling of a Deep Coastal Aquifer System in Tanzania Guided by Hydrocarbon Exploration Data

Matthew Gamache, P.E., D.WRE CDM Smith Co-authors: Henning Moe, P.G., CDM Smith Fridtjov Ruden, Ruden AS

Presentation overview

- Use of oil/gas exploration data in a groundwater context;
- Numerical groundwater modelling in support of regional aquifer development planning
- Conclusions/observations from deep groundwater exploration a deep coastal aquifer setting

Kimbiji Aquifer Assessment Objective

"to undertake an in-depth integrated qualitative and quantitative analysis of the Kimbiji aquifer for supporting its sustainable development and management"

Location

Processed 1,140 km of Seismic Survey Data; Reviewed Borehole Logs and Completion Reports

Numerical Groundwater Model

- Fully 3-Dimensional
- Finite element
- Recharge varied spatially based on rainfall, evapotranspiration, and land cover
- Simulates freshwater-saline water interaction
- Calibrated to static heads (including artesian heads) and drawdowns (during aquifer performance tests)
- Extensively documented and independently reviewed
- Calibrated model was applied as an investigation tool to support:
 - Hydrogeological characterisation
 - Scientific questioning and guidance
 - Aquifer development planning
 - Strategic environmental assessment

CDM Smith

Model Calibration - Example

Saline Groundwater Position

Extended Wellfield - max. drawdown @ 100 years

Extended Wellfield – drawdown at water table @ 100 years

Conclusions

- Benefits and challenges: bridging the oil and water sectors
- Oil/water "deep/shallow"
- Hydrogeological discoveries are yet to be made
- 3D numerical model was invaluable (at relatively low cost):
 - Framing of questions and focusing recommendations
 - Explaining how the system works to client and funders (also helped explain concepts of wellhead protection)
- Sharp interface modeling is appropriate for regionalscale models

Kimbiji Aquifer Assessment Objective

"to undertake an in-depth integrated qualitative and quantitative analysis of the Kimbiji aquifer for supporting its sustainable development and management".

Historical Case:

- The model was run in steady-state, using present-day recharge and upwards fluxes at the model base, and a sea level that is 125 meters below current conditions to establish an equilibrium saline water interface position from which historical simulations could be started.
- With the steady-state saline water interface position in place as a starting condition, the model was run in transient mode, using 100-year time steps, for 19,000 years, varying the seal evel based on estimates made by Woodroffe and Horton (2005).
- As the sea level rose, the simulated saline water interface position moved closer to the shoreline until a present-day, historically-based interface position was established.

Conservative Case:

- The model was run in steady-state, using present-day recharge and upwards fluxes as well as the current sea level elevation.
- This produced a saline water interface position that is significantly closer to the shore and represents a conservative estimate of these conditions.

Notes

A groundwater model is calibrated to data and observations. For the KAA project, the groundwater model was calibrated to:

- Average seasonal average conditions, based on average annual recharge (as described in the CMR) to represent "steady-state" (static) conditions; and
- Transient (time-varying) conditions, guided by the aquifer performance tests which were carried out in each of the completed exploration wells.

Notes

Table 1 - Summary of Well and Test Data									
Well Name	X1	γi	Ground Surface	Piezometric Head	Estimated Transmissivity Range	Representative Transmissivity	Screen Length ³	Estimated Hydraulic Conductivity	Estimated Well Efficiency
	(m)	(m)	(m asi)*	(m asl)	(m²/d)	(m ¹ /d)	(m)	(m/d)	(%)
E82	511887	9232464	97.8	85.9	1-3	1	216	0.005	76%
EB3	506332	9223812	128.0	102.7	69 - 287	185	172	1.076	76%
E84b	524175	9211033	57.9	>57.92	148 - 490	243	288	0.844	59%
EBS	554884	9211671	21.9	>21.92	26 - 115	86	177	0.486	49%
E84b	548547	9223514	50.3	40.9	56 - 495	276	211	1.308	52%
E87	554067	9233474	42.1	23.7	18 - 91	63	319	0.197	49%
688	537279	9239670	23.9	11.7	62 - 105	85	256	0.332	82%
PW1	543383	9234361	27.0	>27.0 ²	187 - 425	216	296	0.730	71%
PW4	530582	9220323	82.0	57.3	223 - 344	252	288	0.875	91%
(1) Coordinates are in UTM Zone 375 Meters									

3) Distance between the top of

) Distance between the top of the shallowest screen interval and the bottom of the deepest screen interval I meters, above sea level

31

Data Set	Represents	Location	Horizontal Hydraulic Conductivity	Vertical Hydraulic Conductivity (m/d)	
Number			(m/d)		
1	Bulk of aquifer system	Kimbiji aquifer system	0.3	0.0003	
2	More permeable materials in the uplands area	Small are in uplands to west/southwest	5	0.050	
3	Higher permeability layer	KAS, mid to lower depths	2	0.002	
4	Higher permeability layer	KAS, mid to lower depths	1	0.001	
5	Higher permeability layer	KAS, mid to lower depths	0.75	0.001	
6	Shallow aquifer properties	Uppermost later of KAS	2	0.002	
7	Paleogene (rock)	Small area in the vicinity of Pugu Hills, near EB2	0.007	0.007	
8	Made ground (fill)	Dares Salaam	3	0.300	

Well Name	Measured Head	Simulated Head	(Simulated – Measured)	Estimated Transmissivity	Transmissivity Range	Transmissivity in Model ²	
	(m)	(m)	(m)	(m²/d)	(m²/d)	(m²/d)	
EB2	85.9	86.7	0.8	1	1-3	1	
EB3	102.7	101.9	-0.8	185	69 - 287	119	
EB4b	>57.91	73.6 ¹		243	148 - 490	263	
EB5	>21.91	26.71		86	26 - 115	54	
EB6b	40.9	40.4	-0.5	276	56 - 495	133	
EB7	23.7	24.0	0.4	63	18 - 91	94	
EB8	11.7	12.1	0.4	85	62 - 105	62	
PW1	>27.01	27.31		216	187 - 425	253	
PW4	57.3	59.8	2.5	252	223 - 344	164	

(2) Transmissivity calculated by summing the products of screen length and horizontal hydraulic conductivity at each well locat

	Month	Rainfall Recharge		Average Recharge	
3 ipy	montai	(mm)	(mm)	%	
from 42	January	70.05	0.00	0.0%	
іру	February	55.41	0.00	0.0%	
	March	140.39	0.00	0.0%	
	April	253.34	53.75	21.2%	
	May	179.63	25.23	14.0%	
	June	40.02	0.00	0.0%	
	July	22.63	0.00	0.0%	
	August	22.88	0.00	0.0%	
	September	22.49	0.00	0.0%	
	October	62.12	0.00	0.0%	
	November	114.49	0.00	0.0%	
	December	108.12	0.00	0.0%	
	Annual	1091.59	78.98	7.2%	

36

gure 9: Rainfall and Surface Water Gauging State