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How do springs respond to precipitation?

• Infiltration displaces water in pores, fractures, conduits

– discharge (Q) peak results from pressure-pulse propagation

• Decrease in specific conductance (SC) follows Q rise: 
storm flow dilutes more mineralized base flow

– may have initial increase in SC (“first flush”)

• Water T (Tw) can decrease or increase, depending on 
contrast between Tw and air T (Ta)

• At event to seasonal time scales, springs can exhibit 
flat, oscillatory, or erratic Tw patterns

– depends on efficiency of water-matrix heat exchange

Objective: highlight range of responses

• What can we infer about hydrologic behavior from 
physical, thermal, and chemical responses of springs?

• How do controlling factors* interact in regulating flow-
path connectivity and responses to external forcings?

– *climate, land use/cover, lithology, structure, relief

• Case studies from two humid temperate regions with 
contrasting controlling factors:

– Inner Bluegrass, Kentucky (USA)

– Middle Atlas plateau (Morocco)

25% of Kentucky has well-developed karst on Paleozoic limestones

(Currens, 2002)

Inner Bluegrass region

• Humid, temperate mid-continental climate

– no pronounced wet or dry seasons

– annual precipitation (liquid equivalent) 1.2 m/yr

• Fluviokarst developed on flat-lying Ordovician 
limestones interbedded with shales

• Loamy to clayey residual soils

• Gently rolling terrain (~ 250–290 m asl)

• Mixed land use/land cover: urban/suburban areas, 
agriculture (pasture and cropland), forest
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Study site: Blue Hole spring

• Drains town of Versailles (pop. ~ 7,500); ~ 800-ha 
basin containing sub-basins (resurgences)

• Monitored at 1-h intervals: 

– Tw, SC, precipitation (P), Ta (9/2004 – 4/2006)

– stage and Q (via rating curve) (6/2005 – 4/2006)

• Defined storm events as total P ≥ 2.5 mm, with gaps 
≤ 8 h between rainfalls

(Currens et al., 2002)

Stream sink (swallet), Blue Hole Spring basin

Results: precipitation and discharge

• 100 events during 574-d study period

– max. hourly P for study period = 21.6 mm

– event P for study period: med. = 8.4 mm, max. = 73.2 mm

– event duration: 1–38 h (med. 10 h)

– avg. P for entire period: 2.15 mm/d

• Max. Q depends on event P, max. hourly P for event, 
and 1-wk. antecedent P
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Qmax = 0.0294 + 0.0270 total event P + 0.0387 max hourly P + 0.00835 1-wk ante. P (r2 = 0.766)

Results: temperature and SC

• Annual Tw time series is damped and lags Ta by ~ 1 mo

• Tw seasonally increased or decreased with storms

– differences between max. and min. Tw (= ΔTw) ≤ 5.58 °C

– tended to be greater in winter/summer vs. spring/autumn

• SC generally decreased during storms, with exceptions:

– probable road salt runoff in winter

– flushing of evapo-concentrated salt from soils in dry periods?

• Aggregating data from storms: as max. Q increased, 
min. SC decreased and ΔTw increased 

(www.bugbog.com)
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Middle Atlas region

• Mediterranean climate with dry summers

– annual precipitation (liquid equivalent) ~ 1 m on plateau and 
~ 600 mm at foot of plateau

• Plateau geology: tabular, faulted dolomitic limestones 
overlain by thin, rocky soils

– degraded by deforestation and overgrazing

• Elevation range: ~ 1500–1600 m asl on plateau to ~ 
800–900 m asl at foot of plateau

• Mixed land use/land cover: rangeland, forest, towns

Study sites: springs on plateau and at base

• Monitoring at 1-h intervals:

– Ta and P at Ifrane (on plateau), 3/2014 – 5/2015

– Tw and stage at Sidi Rached and Zerouka springs (on plateau), 
3/2014 – 5/2015

– Tw at Ribaa spring (base of plateau), 4/2014 – 5/2015

• Defined storm events as total P ≥ 2.5 mm, with gaps ≤ 
8 h between rainfalls

• Daily monitoring:

– δ2H and δ18O at Zerouka, 3/2014 – 3/2015

(Amraoui et al. 2003)

(Benaabidate and Fryar 2010)

Schematic N-S hydrostratigraphic cross-section View from Middle Atlas plateau near Ifrane, May 2014
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Distributary spring at foot of plateau (Ribaa), February 2014 Spring house, Ribaa, February 2014

Results: precipitation

• 40 events during 423-d study period

– max. hourly P for study period = 18 mm

– event P for study period: med. = 14.2 mm, max. = 81.5 mm

– event duration: 1–84 h (med. 19.5 h)

– avg. P for entire period: 2.38 mm/d

Results: spring temperature

• Sidi Rached: time-lagged seasonal signal relative to Ta

– Tw minima in May–June and maxima in October 

– responses to individual storms superposed on signal

• Zerouka: stable within ± 0.06°C

• Ribaa: differing seasonal responses

– relatively uniform April–November (16.13–16.20 °C)

– flashy November–May (15.89–16.70 °C; max. ΔTw 0.74 °C)
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Results: stage and stable isotopes

• Stage at Sidi Rached and Zerouka tracked together

– broad minimum in late summer (municipal pumping?)

– muted responses to individual storms superposed on signal

• Tw at Sidi Rached tracked stage March–October, then 
declined relative to stage

• δ2H and δ18O signals diverged except for March–April

– data points scattered around LMWL

May – January

February – April

Interpretations—Middle Atlas springs

• Sidi Rached and Zerouka Tw signals indicate efficient 
thermal exchange with matrix 

– flow is not conduit-dominated

• Ribaa appears to be fed by multiple flow systems

– flow system from plateau dominates during dry season

– local flow system is significant during wet season

• Divergent δ2H and δ18O signals at Zerouka indicate 
changes in sources of recharge

– less- to more-evaporated going from wet to dry seasons

Conceptual model and implications

• Spring behaviors reflect limited karstification of 
dolomitic limestone in Mediterranean climate

– relatively diffuse, dominantly cool-season recharge

– occasional, subtle responses to individual storms

– slow, matrix-dominated drainage and refilling

• Springs may respond relatively slowly to changes 
in precipitation (over periods of months to years)

– still potentially susceptible to drought, which may 
become more frequent with climate change
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Comparisons and conclusions

• Average daily precipitation was similar between Inner 
Bluegrass and Middle Atlas regions

– but storms in central Kentucky were more intense

• Springs in both regions showed seasonal variability

– but springs in central Kentucky were flashier, with more 
pronounced responses to precipitation and shorter time lags

• Differences reflect for central Kentucky:

– more intense precipitation

– more extensive karstification

– more impervious cover (urbanization)
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