Responses of Karst.Springs to Precipitationv
Reflect Land.Use, Lithology, and-Climate.

Alan'E. Fryart, JTames W.\Ward %, Brett'A. Howell* Thomas M. Reed®3
1Dept. of Earth and Environmental Sciences, Universityjof-Kentucky, Lexington
2Dept. of -Rhysics ahd Geosciences,/Angelo State University, San-Angelo, TX.
3Wood plc, Lexington, KY

.

Objective: highlight range of respons

e What can we infer about hydrologic behavior from
physical, thermal, and chemical responses of springs?
How do controlling factors* interact in regulating flow-
path connectivity and responses to external forcings?
— *climate, land use/cover, lithology, structure, relief
Case studies from two humid temperate regions with
contrasting controlling factors:

— Inner Bluegrass, Kentucky (USA)
— Middle Atlas plateau (Morocco)

25% of Kentucky has well-developed karst on Paleozoic limestones
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How do springs respond to precipitation?

Infiltration displaces water in pores, fractures, conduits
— discharge (Q) peak results from pressure-pulse propagation
Decrease in specific conductance (SC) follows Q rise:
storm flow dilutes more mineralized base flow

— may have initial increase in SC (“first flush”)

Water T (T,,) can decrease or increase, depending on
contrast between T,, and air T (T,)

At event to seasonal time scales, springs can exhibit
flat, oscillatory, or erratic T, patterns

— depends on efficiency of water-matrix heat exchange
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Inner Bluegrass region

Humid, temperate mid-continental climate

— no pronounced wet or dry seasons

— annual precipitation (liquid equivalent) 1.2 m/yr
Fluviokarst developed on flat-lying Ordovician
limestones interbedded with shales

Loamy to clayey residual soils

Gently rolling terrain (~ 250-290 m asl)

Mixed land use/land cover: urban/suburban areas,
agriculture (pasture and cropland), forest
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dy site: Blue Hole spring

Generalized Block Diagram
of the Inner Bluegrass Karst
James C, Cumrens.

T g ¢ Drains town of Versailles (pop. ~ 7,500); ~ 800-ha
basin containing sub-basins (resurgences)

‘ e Monitored at 1-h intervals:
— T, SC, precipitation (P), T, (9/2004 — 4/2006)
— stage and Q (via rating curve) (6/2005 — 4/2006)
¢ Defined storm events as total P > 2.5 mm, with gaps

< 8 h between rainfalls

- Siakhoks

Base tevel
| sprng

waiar vl

Sallwaler
o sullr wel

Detailed map of Versailles &rea
SCALE: 1inch = 4,000 feet: 1:48.000

Contour interval 10 feet N2

Results: precipitation and discharge

100 events during 574-d study period

— max. hourly P for study period = 21.6 mm

— event P for study period: med. = 8.4 mm, max. = 73.2 mm
— event duration: 1-38 h (med. 10 h)

— avg. P for entire period: 2.15 mm/d

Max. Q depends on event P, max. hourly P for event,
and 1-wk. antecedent P
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Precipitation (mm) or Spring temperature (C)
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max - min water T (C)

Standardized coefficients

Q max / Standardized coefficients (95% conf. interval)

total everft P, 0.625

maxhourly P, 0.250

24-hr ante. P, 0.000

Variable

1-wk ante, P, 0.204

Qpax = 0.0294 + 0.0270 total event P +0.0387 max hourly P + 0.00835 1-wk ante. P (1 = 0.766)
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Results: temperature and S
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¢ Annual T,, time series is damped and lags T, by ~ 1 mo

e T, seasonally increased or decreased with storms
— differences between max. and min. T,, (= AT,) £5.58 °C

— tended to be greater in winter/summer vs. spring/autumn

e SC generally decreased during storms, with exceptions:
— probable road salt runoff in winter

— flushing of evapo-concentrated salt from soils in dry periods?

e Aggregating data from storms: as max. Q increased,
min. SC decreased and AT, increased
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Middle Atlas region y sites: springs on plateau and at base

e Monitoring at 1-h intervals:
— T, and P at Ifrane (on plateau), 3/2014 - 5/2015
— T, and stage at Sidi Rached and Zerouka springs (on plateau),
3/2014-5/2015
- T,, at Ribaa spring (base of plateau), 4/2014 — 5/2015
¢ Defined storm events as total P > 2.5 mm, with gaps <
8 h between rainfalls

Mediterranean climate with dry summers

— annual precipitation (liquid equivalent) ~ 1 m on plateau and
~ 600 mm at foot of plateau

Plateau geology: tabular, faulted dolomitic limestones

overlain by thin, rocky soils

— degraded by deforestation and overgrazing

Elevation range: ~ 1500-1600 m asl on plateau to ~
800-900 m asl at foot of plateau

Mixed land use/land cover: rangeland, forest, towns

Daily monitoring:
— 82H and 680 at Zerouka, 3/2014 — 3/2015
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Results: spring temperature

¢ Sidi Rached: time-lagged seasonal signal relative to

Results: precipitation

e 40 events during 423-d study period

— max. hourly P for study period = 18 mm — T, minima in May—June and maxima in October

— responses to individual storms superposed on signal
e Zerouka: stable within £ 0.06°C
¢ Ribaa: differing seasonal responses
— relatively uniform April-November (16.13-16.20 °C)
— flashy November—May (15.89-16.70 °C; max. AT,, 0.74 °C)

— event P for study period: med. = 14.2 mm, max.
— event duration: 1-84 h (med. 19.5 h)
avg. P for entire period: 2.38 mm/

Spring Temperature at All Localities Sidi Rached Water Temperature and Ifrane Air Temperature
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Its: stage and stable isotope
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Sidi Rached and Zerouka Stage vs Precipitation
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Interpretations—Middle Atlas springs

e Sidi Rached and Zerouka T, signals indicate efficient
thermal exchange with matrix
— flow is not conduit-dominated
e Ribaa appears to be fed by multiple flow systems
— flow system from plateau dominates during dry season
— local flow system is significant during wet season

* Divergent 82H and 620 signals at Zerouka indicate
changes in sources of recharge
— less- to more-evaporated going from wet to dry seasons

Conceptual model and implications

e Spring behaviors reflect limited karstification of
dolomitic limestone in Mediterranean climate
— relatively diffuse, dominantly cool-season recharge
— occasional, subtle responses to individual storms
— slow, matrix-dominated drainage and refilling

e Springs may respond relatively slowly to changes
in precipitation (over periods of months to years)

— still potentially susceptible to drought, which may
become more frequent with climate change
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Comparisons and conclusions

Average daily precipitation was similar between Inner
Bluegrass and Middle Atlas regions

— but storms in central Kentucky were more intense
Springs in both regions showed seasonal variability
— but springs in central Kentucky were flashier, with more
pronounced responses to precipitation and shorter time lags
Differences reflect for central Kentucky:
— more intense precipitation
— more extensive karstification

— more impervious cover (urbanization)




