Surface and Downhole Geophysics for Determination of Light Non-Aqueous Phase Liquid Migration in Faulted Dolomite

Monday, December 4, 2017
Davidson Ballroom Foyer (Music City Center)
Corey Miller , Earth Science Department, Emporia State University, Emporia, KS
Marcia Schulmeister, Ph.D., P.G. , Earth Science Department, Emporia State University, Emporia, KS

The determination of LNAPL migration and groundwater flow patterns by identifying and mapping subsurface preferential pathways such as faults, fractures, air/water-filled voids, or solution cavities that may impact groundwater movement is crucial from both an environmental and engineering perspective. The primary goal of this research was to determine the feasibility of detecting LNAPL migration in a highly-weathered and faulted dolomitic environment through a combination of surface electrical resistivity imaging (ERI) and induced polarization (IP) methods, and a detailed suite of borehole geophysical logs. Appropriate ERI and IP electrode geometries have been taken into account for a target depth of approximately 130-feet bgs. Surface geophysical data have been integrated with downhole geophysical data from eight wells that include electric (8”, 16”, 32”, and 64” normal resistivity), natural gamma, fluid resistivity, temperature, optical televiewer, caliper, and heat pulse flow meter logs. These data were compared to structural geologic features identified with ERI and IP data to determine preferential pathways in which both groundwater and LNAPL likely migrate throughout this site. A second goal of this research was examine the observe any variations in ERI, IP, and borehole geophysical responses over areas which contain documented LNAPL in large, known volumes, and infer whether these variations in geophysical responses are caused by the significant LNAPL presence. This research discusses observed variations in both surface and downhole geophysical responses and how these variations relate to interpreted subsurface structural features and LNAPL migration.

Corey Miller, Earth Science Department, Emporia State University, Emporia, KS
Corey Miller is a graduate student in the Earth Science Department of Emporia State University. He currently works for a geophysical consulting firm based in Pennington, New Jersey where he works on environmental projects utilizing near suface and downhole geophysical methods.


Marcia Schulmeister, Ph.D., P.G., Earth Science Department, Emporia State University, Emporia, KS
Marcia Schulmeister is an Associate Professor of Geology and Department Head of the Earth Science Department at Emporia State University. She has also recently served as a Consulting Geochemist for Thailand's Division of Groundwater Resources on one of the first artificial recharge and recovery systems in in Southeast Asia. Her research interests lie in hydrogeology and geochemistry.



NGWA Groundwater Summit is being held in conjunction with Groundwater Week.

Find out more about NGWA and our events.

National Ground Water Association
601 Dempsey Road
Westerville, Ohio 43081
USA
Phone 614 898.7791
(toll-free within the United States 800 551.7379)
Fax 614 898.7786
Email ngwa@ngwa.org

Websites:

http://www.ngwa.org/ —home site of NGWA

http://www.wellowner.org — information for well owners