
Operational Stage of a Well

- Being able to track a wells aging and determine when to rehabilitate or replace a well.
- Be proactive and not run to failure.

Johnson Screens

FACTORS THE EFFECT WELL PERFORMANCE / LIFE

- Aquifer changes
- Water chemistry
- Biology
- Well design
- Well construction
- Well and power plant aging
- Maintenance history

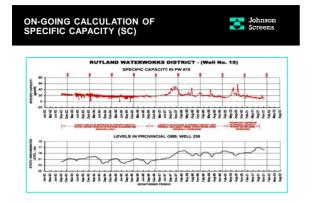
Johnson Screens

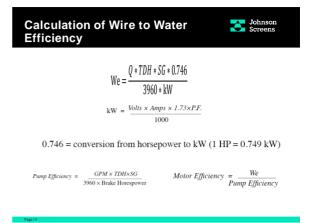
THREE FORMS OF WELL	Johnson
CHANGES	Screens

PHYSICAL				BIOLOGICAL			CHEMICAL						
			Increase		Increase	a in Biologica	Activity	_	Water Chemistry				
Decrease in Specific Capacity	Decrease in Wire to Water Efficiency	Corrosion Structural Issue	in Sand Pumping or Turbidity	IRB per 10 ml	SRB per 5 tube culture	Anserobic	Population	Coliform or Pathogen	TDS	CaNg	Fe / Mn	ORP	Contaminant
< 1%	< 1%	No Change	No change	Absent	Absent (0 tubes)	< 1% Present	ATP <20,000 or HPC <100	Absent	<5% increas 0	<10% increase	<10% increase	<10% change	Absert
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 - 3% decrease	0 - 3% decrease	Slight corrosion of casing	Increase of 2 ppm or total < 3 ppm sand	Low Occurrence (1-3 bactra)	Low Occurrence (1 of 5 tubes)	2- 10% Present	ATP 75,000 - 100,000 or HPC 200-400	Present	6-10% increas e	11 - 20% increase	11 - 20% increase	11 - 25% change	> water quality objective (MCL/MAC
2	2	2	2	2	2	2	2	35	2	2	2	2	35
3 - 10% decrease	3 - 10% decrease	casing small	Increase of 2 · 7 ppm or total < 6 ppm or > 1.0 ntu	Occurrence	Moderate Occurrence (2 or 3 tubes)	11-20% Present	ATP 125,000 175 or HPC 500-1000		11-20% increas e	21 - 40%	21 - 40% increase	25 - 40% increase	
4	4	12	4	6	6	6	6		4	4	4	4	
> 10 % decrease	> 10 % decrease	Loss of significant portions of screen or holes in casing	Increase of 2 - 7 ppm or total < 7 ppm, or > 1.0 ritu	Heavy Occurrence	Heavy Occurrence (4 or 5 tubes)	> 20% Present	ATP >200,000 or HPC >1000		>20% increas e	>40% increase	>40% increase	> 40% increase	
6	12	20	6	8	8	8	8		6	6	6	6	
0	0	0	0	0	0	0	0	0	0	0	0	0	0

OF	PERATION	NAL STAGE	QUANTIFIED Johnson Screens	
			ng of Physical, Chemical, and Iution to Identify Change	
	Total Points	Operational Stage	Action	
	0 - 12	A	Monitor	
	13 - 25	В	Plan Rehab within 18 months	
	26 -35	с	Plan Rehab within 4 months	
	> 35	D	Immediate Rehab or Replace	

Operational Stage B									K	J	ohns cree	on ns	
					Increase in Biological Activity				Water Chernistry				
Decrease in Specific Capacity	Decrease In Wite to Water Efficiency	Corrosion Structural Issue	Increase in Sand Pumping or Turbidity	IRS per 10 mi	SRB per Stube culture	Anaerobic	Population	Collform or Pathogen	TDS	CaWg	Fe / Mn	ORP	Contaminant
< 1%	< 1%	No Change	No change	Absent	Absent (0 tubes)	< 1% Present	ATP <20,000 or HPC <100	Absent	<5% increase	<10% increase	<10% increase	<10% change	Absent
0	0	0	0	0	0	0	0	0	0	0	0	0	0
- 3% decrease	0 - 3% decrease	Sight corresion of casing	Increase of 2 ppm or total < 3 ppm send	Low Occurrence (1-3 bactina)	Low Occurrence (1 of 5 tubes)	2- 10% Present	ATP 75,000 - 100,000 or HPC 200-400	Present	6-10% Increase	11 - 20% increase	11 - 20% Increase	11 - 25% change	> unter quality objective (MCL/MAC)
2	2	2	2	2	2	2	2	35	2	2	2	2	35
3 - 10% decresse	3 - 10% decrease 4	Significant consion of casing small holes in casing or screen	increase of 2 - 7 ppm or total <6 ppm or > 1.0 mlu 4	Moderate Documence (4 - 7 bateria) 6	Moderate Occurrence (2 or 3 tubes) 6	11-20% Present	ATP 125,000- 175 or HPC 500- 1000		11-22% Increase	21 - 40% increase 4	21 - 42% increase	26 - 40% increase	
		-12		-	ŝ	ů			-		· ·	+	
10 % decrease	> 10 % decrease	Loss of significant portions of screen or holes in casing	Increase of 2 - 7 ppm or total < 7 ppm, or > 1.0 ntu	Heavy Occumence (>7)	Heavy Occurrence (4 or 5 tubes)	> 20% Present	ATP >200,000 o HPC >1000		>20% Increase	>42% increase	>40% increase	> 40% increase	
6	12	20	6	•		•			6	6	6	6	
2	0	2	0	6	0	0	6	•	2	0	2	2	0


Total = 22



sical Changes 🔁 Soft									
Tracking Physical Changes									
Decrease in Specific Capacity	Decrease in Wire to Water Efficiency	Corrosion or Structural Issue	Increase in Sand Pumping or Turbidity						
<1% 0	<1% 0	No Change 0	No Change 0						
0-3% decrease 2	0-3% decrease 2	Slight corrosion of casing 2	Increase of 2 ppm 2						
3-10% decrease 4	3-10% decrease 4	Significant corrosion of casing 12	Increase of 2-7 ppm or >1 ntu 4						
>10% decrease	>10% decrease 12	Los of portions of casing or screen 20	Increase of >7 ppm or >1 ntu 6						

Causes of change in Specific Capacity Johnson Screens

- Changes in aquifer
 Recharge/discharge boundaries
 Aquifer thickness
 Migration of fines
 Corrosion/structural damage
 Biological
 Chemical

WIRE TO WATER EFFIC	IENCY			Johns Scree	
 Allows operators to identify inefficient 	Motor Hp	Low	Fair	Good	Excellent
systems	3 - 7.5	< 44	44 - 49.9	50 - 54.9	> 54.9
Schedule maintenance	10	< 46	46 - 52.9	53 - 57.9	> 57.9
- Estimate notential	15	< 48	48 - 53.9	54 - 59.9	> 59.9
Estimate potential	20 - 25	< 50	50 - 56.9	57.0 - 60.9	> 60.9
energy savings	30 - 50	< 52.1	52.1 - 58.9	59 - 61.9	> 61.9
 Predict pump/motor 	60 - 75	< 56	56 - 60.9	61 - 65.9	> 65.9
failure	100	< 57.3	57.3 - 62.9	63 - 66.9	> 66.9
	150	< 58.1	58.1 - 63.4	63.5 - 68.9	> 68.9
	200	< 59.1	59.1 - 63.8	63.9 - 69.4	> 69.4
	250	< 59.1	59.1 - 63.8	63.9 - 69.4	> 69.4
	300	< 60.0	60 - 64.0	64.1 - 69.9	> 69.9
				(PG&E,	1987)

CORROSION AND WELL DETERIORATION Johnson Screens

(splash zone) Packer failure

CAUSES OF SAND PUMPING

- Johnson Screens
- Improper sizing of filter pack/slot size
- Blockage of screens causing increased flow velocities
- Incomplete placement of filter pack
- Poor sampling and sediment size identification leading to poor design
- Insufficient well development
- Corrosion of casing and screen

SYMPTOMS OF SAND INTAKE

Johnson Screens

- · Abrasion of screens, piping and valves
- Destruction of impellers
- Filling of well with sand
- Ground settlement around well
- Sand in discharge
- If you are increasing sand production > 3ppm redevelopment or video might be warranted

INCREASE IN TURBIDITY

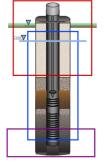
Johnson Screens

- Indication of changes in flow
- Increased intake blockage

sical Changes 🔀 John									
Tracking Physical Changes									
Decrease in Specific Capacity	Decrease in Wire to Water Efficiency	Corrosion or Structural Issue	Increase in Sand Pumping or Turbidity						
<1% 0	<1% 0	No Change 0	No Change 0						
0-3% decrease 2	0-3% decrease 2	Slight corrosion of casing 2	Increase of 2 ppm 2						
3-10% decrease 4	3-10% decrease 4	Significant corrosion of casing 12	Increase of 2-7 ppm or >1 ntu 4						
>10% decrease 6	>10% decrease 12	Los of portions of casing or screen 20	Increase of >7 ppm or >1 ntu 6						

Two Main Components of the Progressive Stages of Well Deterioration:

- 1. Chemistry changes in a well
- 2. Biological changes in a well


©WSE, Inc. 2017 22

Geography of The Well

The three areas which account for the primary changes in chemistry and biology of a well.

Secondary changes would be caused by contamination or natural occurrences of the aquifer which then influences the well.

WATER SYSTEMS ENGINEERING

©WSE, Inc. 2017

Primary reasons for changes in the biology

- 1. Initial well construction introduces air (oxygen) to the water.
- 2. Pumping causes accumulation of fines, minerals, and other debris which harbor bacteria and encourage near well growth.
- 3. Well cycling encourages large growth of aerobic bacteria. During idle periods the aerated water feeds the bacteria. As growth occurs the air (oxygen) is depleted and the dying bacteria settle to the bottom.
- 4. Organic debris from dying aerobes provide food for the anaerobic zone with resulting anaerobic growth

WATER SYSTEMS ENGINEERING

Primary reasons for chemical change in well water?

Changes in pH, alkalinity, and TDS are caused by:

- 1. Alkalinity changes do to $\rm CO_2$ degassing from the aquifer
- 2. Calcium precipitation in the casing or immediate formation
- 3. Anaerobic acid gas production in the well bottom

©WSE Inc 2017

- 4 Release of cellular acids from dyeing bacterial populations in the standing casing water
- 5 Corrosion (oxidation) of iron

WATER SYSTEMS

Some Truisms to Keep in Mind!

- There is chemistry and biology present in every aquifer and they flow into the well.
- The chemistry/biology changes that take place in a well environment are often tied together with a change in one propagating a change in other parameters.
- There are specific parameters in the Operating Stage Well Chart which will help you tract these changes in your well.

©WSE, Inc. 2017 5

An Example:

- Bacteria increase in the well water.
- Cycling allows standing (static) well water.
- Death of aerobic bacteria release cellular acids and promote pH decline.
- Bacterial death provides food source for anaerobic bacteria in well bottom—pH decline
- Lower pH promotes corrosion of available iron.

Tracking Biological Activity								
Iron Bacteria	Sulfate Reducing Bacteria	Anaerobic Growth	Population (ATP or HPC)	Coliform or Pathogen Presence				
absent	absent	< 1% present	ATP < 20,000 HPC <100	Absent				
0	0	0	0	0				
low occurrence	low occurrence	2 to 10% presence	ATP 75,000 to 100,000 HPC 200-400	present				
2	2	2	2	35				
moderate occurrence 6	moderate occurrence 6	11-20% presence 6	ATP 125,000 to 175,000 HPC 500-1000 6	-				
heavy occurrence 8	heavy occurrence 8	>20 % present 8	ATP >200,000 HPC >1500 8	-				

Iron Bacteria

- This is a microscopic test which counts the specific stalked iron related bacteria in a 10ml sample after centrifuge.
- The increases in the number of observed stalks dictate the seriousness of the infestation.

Sulfate Reducing Bacteria (SRB's)

This test estimates the destructive size of the infestation by growth rates as observed in a tube culture. The more tubes that are positive the more growth in the well.

WATER SYSTEMS ENGINEERING

© WSE, Inc. 2017

Anaerobic Population

This test is a measure of the anaerobic population as а percentage of the total population of bacteria. It is a way of measuring the condition of the lower portion of the well. Figures in excess of 15 to 20% indicate a more serious condition as to possible well blockage, taste and odor issuess as well as coliform contamination.

Total Bacterial Populations

- Increase in numbers indicates increase in bacterial growth that attracts mineral deposits.
- HPC records cfu (colony forming units)/ml.
- ATP counts record individual cells per ml.
- The degree of increase or decrease is the controlling parameter.

Tracking Water Chemistry Changes								
TDS	Ca / Mg	Fe / Mn	ORP	Contaminant				
(mg/L)	(mg/L)	(mg/L)	(mv)					
<5% increase	<10% increase	<10% increase	<10% increase	absent				
0	0	0	0	O				
6-10% increase 2	11-20% increase 2	11-20% increase 2	11-25% increase 2	>WQ objective (MCL) 35				
11-20%	21-40%	21-40%	26-40%	-				
increase	increase	increase	increase					
4	4	4	4					
>20% increase	>40% increase	>40% increase	>40% increase	-				
6	6	6	6					
EINGINEERI	wu .		0	WSE, Inc. 2017 33				

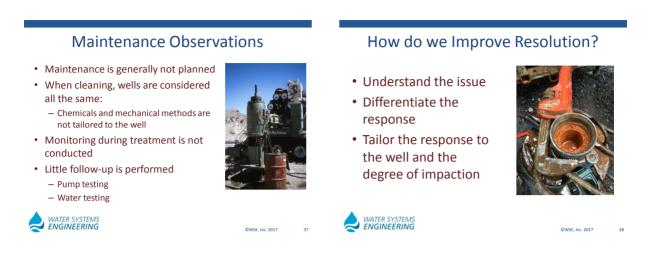
Total Dissolved Solids (TDS)

- An increase or decrease in the TDS can indicate almost any of the activities referred to in slide No 4.
- We can rule out excessive corrosion if our iron concentration remains steady or non existent.
- If hardness or calcium levels remain the same the possibility of mineral deposits are minimal.

WSE, Inc. 2017

32

Oxidation-Reduction Potential (ORP)


- Measure of chemical activity in the well can be used to track corrosion, solids formation, and to an extent bacterial activity.
- If there is cascading water in the well or other form of aeration, the ORP will increase.
- A decrease in ORP could indicate an increase in anaerobic activity in the well bottom yielding acid production.

Resolution

Stage A (0-12 pts)	Monitor Most Regularly Operated Wells
Stage B (13-25 pts)	 Fouling is present and beginning to impact well Plan Rehab within 18 months
Stage C (26-35 pts)	The well is impacted, but failure is not imminent Plan Rehab within 4 months
Stage D (>35 pts)	Significant Event / FoulingImmediate Rehab or Replacement
WATER SYSTEMS	©WSE, Inc. 2017

Well Maintenance

Disinfection – chlorine treatment of the well to target bacteria

Cleaning – combined chemical and mechanical treatment of the well targeting biofouling and/or mineral scale

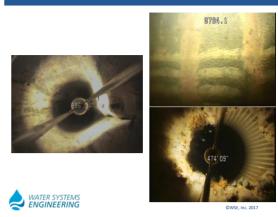
Re-development – combined chemical and mechanical efforts targeting muds and sediment within the borehole and aquifer

©WSE, Inc. 2017 40

4 Key Points of Response

- Do we know what the problem is?
- Hard scale, sediment, biology
 Level of impaction
- Are we using the correct methods & the right stuff?
 Targeting the problem
- Are we using it correctly?
 - Application, Amount, Time
 - Health & Safety of Crew and Environment
 - Monitoring during treatment
- Are we limiting harmful impacts?
 - Well Structure
 - Aquifer & Environment

©WSE, Inc. 2017 41


Procedure	Objective	Optimal Use		
Chemical (dump/pump)	Breakdown of mineral scale or targeted disinfection of biomass	Light fouling or non-aggressive bacterial problems		
Brushing	Physical breakdown of accumulations within the inner well	Targeting biomass or scale prior to evacuation and subsequent chemical treatment		
Mechanical Surging Single or double disc, bailer	Agitation within the screened zone	Combined with chemicals to target fouling within the filter pack; development		
Jetting with water	Focused energy that agitates and "fluffs" the filter pack	When used in conjunction with pumping to remove disrupted material		
Airlift	Used to remove detritus and fill within the well	Evacuation of debris from idle wells; evacuation of material post-treatment		
Gas Impulse	Focused release of high energy within the screened zone to target sediment or scale within the filter pack and formation	Following mechanical pre- treatment for combined chemical cleaning or redevelopment		

44

Acid	Phosphoric	Sulfamic	Hydrochloric	Hydroxyacetic	Oxalic
Common Strength	75%	99%	31.5% (20°)	70%	99%
Weight	13.14 lbs/gal	~ 10 lbs/gal	9.7 Ibs/gal	10.4 lbs/gal	~ 10 lbs/gal
Appearance	Clear Liquid	White Crystal	Yellowish Liquid	Clear Liquid	White Crystal
Formula	H,PO4	H,NSO,H	HCI	(HO)C,COOH	(COOH) ₂
Туре	Mineral	Mineral	Mineral	Organic	Organic
Hazardous Fumes	None	None	High	Some	None
Relative Strength	Strong	Strong	Strong	Weak	Moderately Strong
pH at 1%	1.5	1.2	0.6	2.33	1.25
Use Range (% by Volume)*	1 to 10%	1 to 5%	1 to 15%	1 to 5%	1 to 5%
Relative Reaction Time**	4-5	< 2	1	4-5	2
Corrosiveness to:					
Metals	Slight	Moderate	Very High	Slight	High
Skin	Moderate	Moderate	Severe	Slight	Severe
Reactivity vs:					
Carbonate Scale	Very Good	Very Good	Very Good	Poor	Moderately Good
Sulfate Scale	Fair	Poor	Good-Poor	Very Poor	Poor
Fe/Mn Oxides	Good	FAir	Very Good	Good	Good
Biofilm	Poor	Poor	Poor	Moderately Good	Moderately Good
Pounds of Acid (100%) required to dissolve 1-lb of Calcium Carbonate.	0.65	2.0	0.73	4.5	2.0
		Typical Ranges Us	ed in Well Cleaning		
		"Reaction Time: (1	= Fast, 10 = Slow)		

WATER SYSTEMS

0734.1

- pH
- TDS / Conductivity
- Visual turbidity •

Post-Rehab Video

Post-rehab video completed to check integrity of screens, create visual record of well and measure degree of success

©WSE, Inc. 2017

47

Post-Rehab Pump Test

- Flush any residual debris from the well
- Establish new baseline of well performance • Evaluate
- effectiveness of cleaning efforts

y of Layne, Au ora II

©WSE, Inc. 2017

48

©WSE, Inc. 2017

Post-Rehab Sampling

- State Requirement (Coliform)
- Establish new baseline of chemical, biological, and physical conditions
- Compliments pump test and video to develop new monitoring requirements

WATER SYSTEMS

©WSE, Inc. 2017 24

Summary: Maintenance is a Process

- Identify the problem
- Select the right methods
- Select the right chemicals
- Verify reactions / interactions
- Be actively safe
- Monitor the reactions
- Evacuate, Neutralize, Dispose Correctly
- Follow-up

Operational Stage of the Well NGWA Bookstore

For Additional Information:

Thom Hanna, Johnson Screens Email: thom.hanna@aqseptence.com

Mike Schnieders, Water Systems Engineering Email: mschnieders@h2osystems.com

John H. Schnieders, Water Systems Engineering Email: jhschnieders@h2osystems.com

Questions?

WATER SYSTEMS

