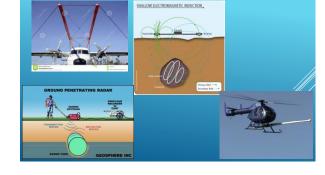
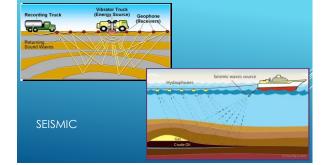
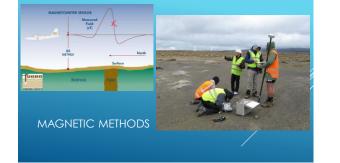
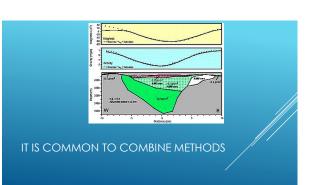

Resistivity 101

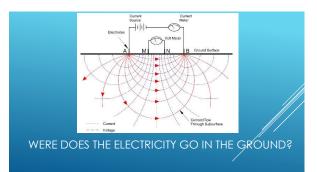
APPLICATIONS WHAT IS GEOPHYSICS? GEOPHYSICAL METHODS RESISTIVITY METHODS INTERPRETATION OF A SURVEY PROBLEMS

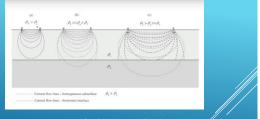


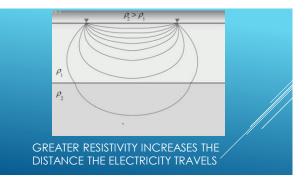


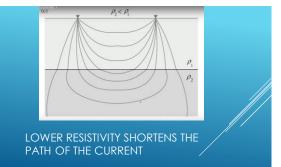


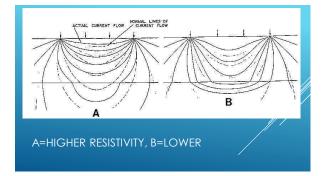


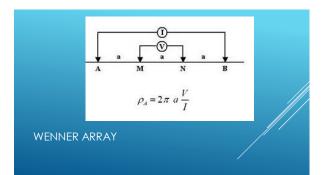




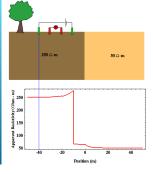

Electrical Resistivity method

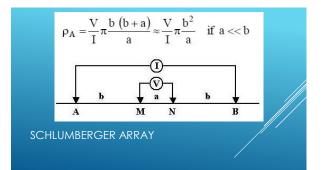

- Profiling and Sounding are two types of resistivity investigations. Profiling is done to detect lateral changes in resistivity. This study reveals the changes in the subsurface lithology or structure from place to place.
- Sounding is done to determine the vertical changes in resistivity, this study reveals changes in lithology, at a particular place with increasing depth.

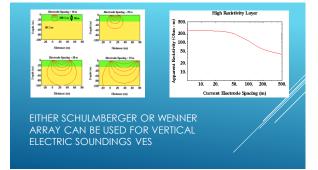




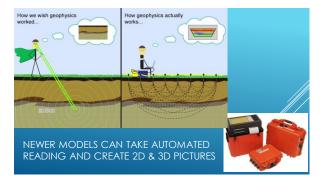
HOW THE DIFFERENCES IN THE GROUND AFFECT THE MOVEMENT OF ELECTRICITY

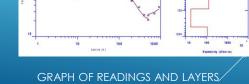






A WENNER ARRAY IS COMMONLY USED FOR PROFILING FORMATIONS




				_			ELD I			IEET	÷				
				1	OCATI CAM	ON				2					
DAT COO ELEV EQU	RDINAT RDINAT ATTON IPMENT RATOR	NANIU		40 HF				DATI COO ELEV EQUI	RDINA ATION PMENT	TE		D 300 H	r		
*	OP1= OP2 (m)	0C1= 0C2 (m)	Δ¥	AI (mb)	R	K	pa (ohm.m)	*	OP2	0C1- 0C2 (m)	4¥ (mV)	14 (m1)	R	K	pa (ohm.m
1	0.5	0.75	(0.1)	(may	6.28	12000	(oun m)	1	0.5	0.75	((may	6.28	(2.00)	(out of
1.5	0.75	2.25			9,42			15	0.75	2.25			9.42		
2	1	3			12.56			2	1	3			12.56		
3	1.5	4.5			18.84			3	1.5	4.5			18.84		
5	2.5	7.5			31.40			5	2.5	7.5			31.40		
	3.5	10.5			43.96			7	3.5	10.5			43.96		
10	5	15			62.80			10	5	15			62.80		
12	6	18			75.36			12	6	18			75.36		
15	7.5	22.5			94.20			15	7.5	22.5			94.20		
20	10	. 30			125.60			20	10	30			125.60		
25	\$2.5	37.5			157.00			25	12.5	37.5			157.00		
30	.15	45			188.40			30		45			188.40		
40	20	60			251.20			40	20	60			251.20		
50	25	75			314.00			50		75			314.00		
60	30	90			375.80			60		90			376.80		
75	37.5	112.5			471.00			75		112.5			471.00		
100	50	150			628.00			100	50	150			628.00	1	

A Survey provides information on the formation you are investigating
If is possible for a non-unique interpretation of the data
Cultural Interference, barb wire fence with T-posts, powerlines, pipelines, transmitters, engines, etc.
Experience of interpretation of the data is key
Non-uniformity of the formation

GEOPHYSICAL SURVEYS DO NOT FIND WATER THEY GIVE YOU INFORMATION ON THE PROPERTIES OF A FORMATION

LAYERS DERIVED FROM READINGS

5-29

29-63

63-140

>140

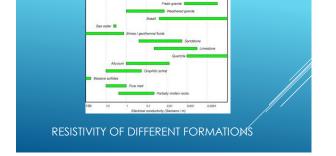
157

53

11

54

ABLE 15: THE RESULT OF THE VES CURVE INTERTNETATION BUICATING THE NUMBER OF SUBSURFACE ALAVERS AND THEIR ESPECTABLE THICKNESSES AT THE PREMISES OF SHONGA ARM, SHONGA, EDU LOCAL GOVERNMENT, KWARA STATE. ABLE 15: PIVOT 2 VES 02									
Number layer	Resistivity(Om)	Thickness(m)	Description of each probable layer						
L	277	0-5	Clayey Sand						


Clay

Sandy Clay

Sandy Clay

Saturated Sandstone/Gravel

***				81		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			(m) and a		
	leges	and a	× ,			
10			600			
1	10	100 *5 (*)	1000	10	120 Resistivity	1800 10 (O hm-m)

LABLE 2	VES 02		
S/N	A B/2 (M)	MN/2 (M)	VES 01 (QM
1	1	0.5	296
2	2	0.5	232
3	3	0.5	208
4	5	0.5	211
5	6	0.5	189
6	6	1.0	238
7	8	1.0	196
8	10	1.0	189
9	10	2.5	173
10	15	2.5	153
11	20	2.5	151
12	30	2.5	139
13	40	2.5	106
14	40	2.5	\$8
15	50	2.5	71
16	60	7.5	7
17	70	7.5	38
18	80	7.5	37
19	80	7.5	122
20	90	7.5	140
21	100	7.5	19
22	110	15	37
23	120	15	36
24	130	15	24
25	140	15	101
26	150	15	30
27	160	15	
28	179	15	
29	180	15	
30	190	15	
40	200	20	
50	210	20	
60	220	20	
79	230	20	