Impacted Groundwater to Drinking Water: Large Potable End Use Groundwater Remediation System Design & Permitting

Kirk Craig | 4 December 2017

Defining the Issue

- Bureau of the Census:
 - U.S. population will grow from 310M in 2010 to 439M in 2050
- >50% of potable water in U.S. is from groundwater
- Increasing scarcity of water providers utilizing impaired water sources
 - Including aquifers contaminated with anthropogenic hazardous chemicals

United States’ Contaminated Groundwater

Defining the Issue

- Groundwater depletion has increased markedly since 1950
- Max depletion during most recent period (2008 - 2016)
 - 2008 avg. depletion = ~6.6 billion gal/yr
 - 1900-2008 avg. depletion = ~2.4 billion gal/yr
 - 1900-2008 AZ alluvial basin total depletion = ~27 billion gal (83K acre-feet)

Magnitude of the Issue

- Little info about CERCLA, RCRA, DoD, DOE, UST, or other sites directly impacting drinking water supply systems
 - The number of sites adversely affecting drinking water aquifers is not tracked
- Superfund - 1,785 Total National Priority List Sites
 - 83% of NPL Sites require remediation of groundwater
 - 2007 EPA reported, 1,072 facilities had a groundwater remedy
 - 106 have a water supply remedy
 - 10% of NPL sites adversely affect or significantly threaten drinking water supply systems

Safe Drinking Water Act (SDWA)

- Contaminant Candidate List (CCL)
 - 100 chemicals and 12 microbiological contaminants
 - MCLs developed for only small subset
 - No MCL does not mean contaminant is not a concern
 - EPA screening or toxicity levels may be lower than MCLs or guidance levels:
 - Lower EPA toxicity level for TCE
 - 1,4-dioxane
 - EPA's Regional Screening Level = 0.35 µg/L
 - CA's Notification Level = 1 µg/L
 - CA's Response Level = 35 µg/L
 - Water purveyors typically go by EPA's Regional Screening Level
State Policies for Potable End-Use of Impacted Aquifers

- Various states have policies to protect aquifers so they can be used as water supplies.
- Very few states have potable end-use groundwater remediation guidance.

Why: Potable End-Use GW Remediation

- Complete aquifer restoration is not economically feasible.
- Cannot be completed in a reasonable amount of time.
- Most GW remedies are already meeting DW standards.
- Wellhead treatment is the only feasible near-term remedy for potable aquifer use.
- Drinking water is the ultimate beneficial reuse.

Potable End-Use Groundwater Remediation: Challenges
Challenges: Potable End-Use GW Remediation

Public Perception and Education

The water purification process

Using a multi-barrier purification process, we can transport recycled water, pure water – Aterion Technology. The result is a Safe, Reliable and Sustainable water supply.

Agency and Municipality Acceptance

ADEQ - Potable end use “is a tool in our tool box for future consideration especially if...(municipalities) expand groundwater resources, which they have told us they are.”

“...the Drinking Water Program recognizes that there are extremely impaired sources in California that need to be cleaned up and for which the resulting product water represents a significant resource that should not be wasted.”

Policy Memo 97-005 Policy Guidance for Direct Domestic Use of Extremely Impaired Sources, November 5, 1997

Challenges: Potable End-Use GW Remediation

Treatment System Challenges

- Evolving DW standards
- New chemicals created, released, detected or deemed harmful
- Advanced toxicological research
- Analytical methods improve
- Costly associated treatment plant upgrades

Challenges: Potable End-Use GW Remediation

Potable End-Use Groundwater Remediation: California Case Study

California’s Contaminated Groundwater

California: Policy Memo 97-005 Policy Guidance for Direct Domestic Use of Extremely Impaired Sources

- “Extremely impaired sources in CA that need to be cleaned up...represent a significant resource that should not be wasted”
- “Drinking water quality and public health shall be given greater consideration than costs”
- Extremely impaired source:
 - Exceeds 10 times an MCL
 - Threatened due to proximity to known impacts
 - Contains a mixture of contaminants of health concern

California’s Contaminated Groundwater

California: Policy Memo 97-005

- Evaluation Process for Extremely Impaired Drinking Water Source
 1. Source Water Assessment
 2. Full characterization of raw water quality
 3. Source Protection
 4. Effective Monitoring and Treatment
 5. Human Health Risks Associated with Failure of Proposed Treatment
 6. Plus 6 more requirements...
Case Study: Puente Valley Operable Unit (PVOU)

Adjudicated Basin

- 1973 – Main San Gabriel Basin Judgment was issued
- Main San Gabriel Basin Watermaster – administers adjudicated water rights and manages groundwater resources

Case Study – PVOU Adjudication

Regulatory Oversight

- Adjudicated Basin
- End Use
- PRP
- Local Agencies
- Others

- Others in PVOU
- San Gabriel Council of Government, local community, private property owners

Case Study – PVOU Stakeholders

Case Study – PVOU Treatment Plant
Case Study – PVOU Process Flow Diagram

Six wts → 125K EQ tank → eight 40K GACs → four 318 ft² vessels → four 144 lamp UV/Ox reactors → two 20K GACs → four multimedia filters → ten RO trains → decarbonator → 500K Clearwell → potable water

PVOU Treatment Plant Current Status

Current Status of the PVOU Potable End-Use Groundwater Remediation Treatment Plant

- Final 100% design complete and under review by EPA
- Permitting is well underway
- Procurement process initiated for construction General Contractor
- Construction anticipated from June 2018 through May 2019
- Final design of smaller, shallow zone non-potable sister system anticipated for mid-2018

Questions?