Radium mobility and the age of groundwater in public-drinking-water supplies from the Cambrian-Ordovician aquifer system, north central USA

Paul Stackelberg, U.S. Geological Survey, Troy, NY
Zoltan Szabo, U.S. Geological Survey, Lawrenceville, NY
Bryant Jurgens, U.S. Geological Survey, Sacramento, CA

National Groundwater Association
Groundwater Summit 2017
Nashville, TN

Background

- MCL = \(226^{\text{Ra}} + 228^{\text{Ra}} = 5 \text{ pCi/L}\)
- Szabo et al., (2012) compiled available NAWQA data from public- and domestic-supply wells and shallow monitoring wells
- \(228^{\text{Ra}}\) not routinely sampled by NAWQA prior to 2013

Sampling locations & combined Ra \((226^{\text{Ra}} + 228^{\text{Ra}})\)

- Aquifer-wide, systematic assessment of \(224^{\text{Ra}}, 226^{\text{Ra}}\) and \(228^{\text{Ra}}\) in public-drinking-water supplies
- 60 PSW's selected using a stratified, randomized sampling design
- Samples collected prior to any treatment

\(224^{\text{Ra}}\) and \(228^{\text{Ra}}\) occur in a 1:1 ratio

- Progeny in the same decay series
- \(224^{\text{Ra}}\) adds alpha-particle activity to drinking-water supplies at concentrations similar to beta-particle activity from \(228^{\text{Ra}}\)
- \(224^{\text{Ra}}\) can be used to identify areas where \(224^{\text{Ra}}\) should be measured and where GAA measurements should be made within 72 hrs of sample collection

Mean Groundwater Age

- \(^{14}\text{C}\) indicates young water in regionally unconfined area and water \(\geq 30,000\) yrs. in the regionally confined area
- \(^{4}\text{He}\) indicates residence times \(> 100,000\) yrs in regionally confined area
- GW ages correspond to flow system

Redox conditions and water types evolve with GW age

- Mean ages ranged from 19 to \(> 1\)Myr
- Youngest samples were from the regionally unconfined area
- Redox conditions and water types evolve with increasing GW age
Combined Ra ($^{226}\text{Ra} + ^{228}\text{Ra}$) increases with anoxia and mineralization

- Under oxic conditions, Ra sorbs to Fe-hydroxide coatings
- Under reducing conditions, Fe-hydroxide coatings dissolve:
 1. Releasing Ra into solution
 2. Decreasing the number of available sorption sites
 3. Increasing the amount of other cations (mineralization) that will compete with Ra for sorption sites

$^{226}\text{Ra}:\text{Ba}$ ratios illustrate change in ^{226}Ra sorption under differing redox conditions

- Ba is a close chemical analog to Ra
- Ba concentrations do not differ across the aquifer system
- Ratios are lowest for "oxic" and highest for "anoxic" samples
- ^{226}Ra is sorbed on Fe-hydroxide coatings under "oxic" conditions and becomes mobilized under reducing conditions and accumulates in solution with increasing GW age

^{226}Ra K_d illustrate change in ^{226}Ra sorption with increasing mineralization

- Highest K_d values in low TDS, oxic samples with low Ra
- Lowest K_d values in mineralized, anoxic samples with high Ra
- ^{228}Ra is mobilized into solution with anoxia and increasing mineralization due to decreasing sorption capacity

Exchange processes do not reduce ^{226}Ra concentrations

- If cation exchange was a dominant process, these ratios would exceed 5
- As a minor process, Ra is not efficiently removed
- Carbonate rocks do not provide abundant exchange capacity

Evaluating Results in a Human-Health Context

Benchmark Quotient = \frac{\text{Environmental Concentration}}{\text{Human-health Benchmark}}

- Ra MCL is based on the combined concentrations of $^{226}\text{Ra} + ^{228}\text{Ra}$
- The health risk from ^{226}Ra is less than that from an equal amount of ^{228}Ra
- ^{224}Ra does not have a MCL
- WHO guidance values were used in lieu of MCLs to calculate Benchmark Quotients for the three Ra isotopes.

Human-health Context

- ^{226}Ra only Ra isotope with BQ > 1
- ^{226}Ra BQ values from regionally unconfined area approached or exceeded unity
- Risk from ^{226}Ra is greatest where ^{226}Ra is greatest
- Indicates importance of monitoring all 3 Ra isotopes in upgradient areas as well as downgradient where the Ra MCL is more frequently exceeded

WHO, 2011, Table 9.2
Conclusions

- Geochemical conditions mobilize Ra into solution
- Under "oxic" conditions Ra sorbs to Fe-hydroxide coatings
- Under "anoxic" conditions Ra is mobilized into solution
- Decreased sorption capacity maintains Ra in solution
- Geochemical processes such as co-precipitation and cation exchange are ineffective
- 228Ra occurs at concentrations greater than its WHO guidance value
- 226Ra and 228Ra contribute to total exposure
- GW age is a surrogate for causative factors

Acknowledgements

- **Well owners**

- **USGS colleagues:**
 - Kymm Barnes
 - Lindsay Hastings
 - Shannon Mappelin
 - Krista Hood
 - Tyler Meyer
 - Brian Engle
 - Michael Menheer
 - William Morrow

Questions?

pestack@usgs.gov
(518) 285-5652

Published in Applied Geochemistry 89C (2018) pp. 34-48