Drilling and Installation of Deep Groundwater Monitoring Wells: Los Alamos National Laboratory, New Mexico

Mark Everett
2017 NGWA Groundwater Summit

December 4, 2017

Goals

• Drilling Program at Los Alamos National Laboratory (LANL)
 – Collect representative groundwater samples to meet project area monitoring objectives
 – Hydrogeologic characterization

Setting

• Unique Challenges
 – Complex Geology
 – Perched groundwater occurrences
 – Depth and associated well development limitations

The western Española basin: An active rift margin

The LANL site

Complex Stratigraphy
Groundwater Occurrences

- Alluvial gw occurs generally ~20-40 ft below ground surface. Recharged by snowmelt, stormwater, and effluent
- Perched-intermediate groundwater known to occur predominantly beneath wet canyons generally 150–800 ft bgs
- Deep or regional groundwater generally occurs from 700-1300 ft bgs
- Monitor well flow rates in regional aquifer typically below 10 gpm

Drilling Approach

- How do we address this hydrogeologic complexity?
 - Physical challenges drilling a monitoring well to 1,000’+
 - Challenges associated with potential impacts of drilling fluids on groundwater chemistry

Current Practices

- Where we are with the groundwater monitoring program today
 - Dual-rotary casing advance
 - Air and potable water only within aquifer
 - Optimized borehole annulus and screen slot size
 - Single screen set near the top of the regional (main) aquifer
 - Extensive well development

Vadose Zone Challenges

- Lost circulation
- Flowing Sands
- Detection of low productivity zones
- Discrete gw samples
- Perching horizons
- Isolating perched zones during drilling

Drilling Fluids

- Foam (organic carbon source)
- Long-chain Polymers (organic carbon source)
- Bentonite-based mud (rare)

Influence of Additives

- Original approach
 - Fluid additives to TD
 - Small screen slot (10 slot)
- Result
 - Small amounts of organic-based additives left behind after development
 - Food source for microbial activity - Reducing conditions resulting in non-representative samples
Response to use of Additives

The pendulum swung
- Stop use of additives 100 ft above aquifer
- Had to increase air volume and pressure to clean out the borehole
- Result: can cause effervescent groundwater (bubbly)
 - High apparent turbidity
 - Low apparent specific capacity
 - Challenges for development

Current Approach: Well Design

- Dual-rotary casing advance
- Air and potable water only within aquifer
- Optimized borehole diameter and screen slot size
- Single screen set near the top of the regional (main) aquifer
- Improves ability to conduct extensive well development

Recent Advances

- Three recently installed wells at up to 25° from vertical
- Response to ground surface constraints
 - Topography
 - Cultural resources

Well Design Using Multiple Lines of Evidence

Case Study- Using Multiple Lines of Evidence
Future Challenges

- Directional drilling, targeting 900 ft bgs
- Multiple installations (from the same drill pad?)
- Enable thorough deployment of amendments into groundwater plume
- 300-500 ft horizontal screened interval

Lessons Learned

- Keep it simple: single screen completions are much easier to develop
- Well design (slot size and annular thickness) optimizes well development
- Well development: spend more time than you think to ensure data quality