Groundwater & Nitrogen Modeling to Prioritize Management Strategies for Suffolk County’s Estuaries

NGWA Groundwater Summit 2017

Dan O’Rourke, PG
Mary Anne Taylor, PE
Qitao Gao
Joshua Registe
Kenneth Zegel, PE

December 4, 2017

Suffolk County, New York

- Sole Source Aquifer for >1.5 million people
- > 800 community public supply wells
- 74% of Suffolk County is un-sewered
- Risk of elevated nitrogen & other contaminants
- Drinking water and surface water concerns

Subwatersheds Wastewater Plan

- Establish first order nitrogen load reductions for surface water restoration
- Protection of groundwater (drinking water)

Project Components

- Delineate subwatersheds
 - Groundwater flow model
 - Baseflow contribution by travel time
 - Highlight areas of particular concern (depth to water, SLOSH)
- Estimate nitrogen load
- Surface water modeling for residence times
- Establish tiered priority areas and rank watersheds
- Nitrogen load reduction requirements
- Evaluate wastewater alternatives & pilot areas
- Simulate 200 year “equilibrium” nitrogen concentrations based on existing and future conditions
- Develop subwatershed wastewater plan
Groundwater Model Code Suite

- DYNSYSTEM – finite element
- DYNFLLOW
- DYNFLOW
- DYNSWIM
- DYNTTRACK

- DYNTTRACK
- Random walk method
- Dispersive particles
- Codes modified for this application
 - > 500,000 model nodes
 - 200,000,000 particles

Subwatershed Simulations

- 191 Water bodies
 - 134 estuaries
 - 19 lakes
 - 38 streams
- Refine regional groundwater models
- Node discretization on the order of 50-100 feet near waterbodies

Delineate Subwatersheds

- Simulated Water Table under Steady-State Conditions (2012-2013)
- Simulated Water Table (ft, msl)
 - Low: 0
 - High: 6

- West Neck Bay

<table>
<thead>
<tr>
<th>Simulated Water Table (ft, msl)</th>
<th>Temporal Zone</th>
<th>% of Total Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2</td>
<td>46%</td>
<td></td>
</tr>
<tr>
<td>2 to 19</td>
<td>38%</td>
<td></td>
</tr>
<tr>
<td>10 to 25</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>25 to 50</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>> 50</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Low to High</td>
<td>46%</td>
<td></td>
</tr>
<tr>
<td>High to 250</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>100 to 200</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

NGWA Groundwater Summit 2017
Nitrogen Load Estimates

- Nitrogen loading calculated using spreadsheet "models"
- Nitrogen Loading Model (NLM)
- NJ Nitrate Dilution Model
- Others...

Major Assumptions

- Vetted through Committee
 - SCDHS, NYSDEC, USGS, Stony Brook University, CDM Smith
- On-Site Wastewater Systems
 - Residential, Non-Residential
 - Attenuation factors (through tank, plume, aquifer)
- Fertilizer
 - Application rates, losses, leaching rates
 - Agriculture, turf (golf, residential, rec fields)
- Animals (dogs, cats)
- Atmospheric Deposition
 - NOAA station
- Geology
 - Till vs Outwash

Verification of N Loading Parameters

- Need to validate assumptions
 - Monitoring wells?
 - Community water supply wells
- Run nitrogen loading simulations and compare to observed [N] in shallow water supply wells
Summary

- Nitrogen load calculations using spreadsheet models OK for first approximation
- Models allow for better evaluation of management strategies, especially for complex systems
 - Allow for incorporation of hundreds of thousands of point sources
 - Account for intertwined hydraulics (water supply wells, all water bodies that receive groundwater baseflow)
 - Evaluate management scenarios & time to benefit
- Assumptions need to be vetted by stakeholders and validated, preferably with supply wells

Next Steps

- Complete subwatershed and nitrogen load modeling for all 191 subwatersheds
- Rank subwatersheds county-wide using:
 - N load
 - Residence time
 - Water quality data
- Run scenarios

Thank You

Dan O'Rourke, PG
CDM Smith
110 Fieldcrest Avenue, #8, 6th Floor
Edison, New Jersey 08837
orourkede@cdmsmith.com
(732) 590-4699
www.cdmsmith.com